A mathematical model for the inhibitory effects of lignin in enzymatic hydrolysis of lignocellulosics.

نویسندگان

  • Roger H Newman
  • Alankar A Vaidya
  • Sylke H Campion
چکیده

A new model for enzymatic hydrolysis of lignocellulosic biomass distinguishes causal influences from enzyme deactivation and restrictions on the accessibility of cellulose. It focuses on calculating the amount of unreacted cellulose at cessation of enzyme activity, unlike existing models that were constructed for calculating the time dependence of conversion. There are three adjustable parameters: (1) 'occluded cellulose' is defined as cellulose that cannot be hydrolysed regardless of enzyme loading or incubation time, (2) a 'characteristic enzyme loading' is sufficient to hydrolyse half of the non-occluded cellulose, (3) a 'mechanism index' measures deviations from first-order kinetics. This model was used to predict that the optimal incubation temperature is lower for lignocellulosics than for pure cellulose. For steam-exploded pine wood after 96h incubation, occluded cellulose was 24% and 26% at 30°C and 50°C, and the characteristic enzyme loadings were 10 and 18FPU/g substrate, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk

In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...

متن کامل

Maobing Tu

The electrostatic and hydrophobic interactions between lignin and enzymes play essential roles in the effective enzymatic hydrolysis of lignocellulosic biomass. The negative effect of lignin has been closely associated with pretreatment efficiency and substrate hydrolysability. However, remarkably we have found contrasting effects of hardwood organosolv lignin (EOL-SG) and softwood organosolv l...

متن کامل

Antimicrobial Peptides Derived from Goat’s Milk Whey Proteins Obtained by Enzymatic Hydrolysis

In this study the bacterial growth inhibitory activity of peptide fragments produced from goat’s milk whey proteins by enzymatic hydrolysis using trypsin, ficin and a combination of both was investigated. Goat’s milk whey proteins were isolated and subjected to enzymatic hydrolysis and peptides were purified by ultrafiltration followed by reverse-phase high-performance liquid chromatography (RP...

متن کامل

Enzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol

Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed.  The hydrolysis process involves two stages: in the first stage, the O...

متن کامل

Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis

Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2013